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MECHANISM OF ARMOR PENETRATION

Fourth Partial Report

OBJECT

To lay a rational foundation for the mechanics of
armor penetration,

SUMMARY
A method 1s outlined for computing the stresses and
the deformation in armor during projectile impact, The
primary problem in this computation is the evaluation of
the effect of the plate material's inertia,
As a first approximation in the evaluation of the

effect of the plate's inertia, the force acting upon the

plate is assumed to be so distributed as to give rise to
, no localized plastic deformation., Both the motion and
‘ié the bending moment of the plate may then be computed irs
the region where the force is applied. While the normal
velocity of the plate is directly proportional to the

L; force, the bending moment, under conditions of combat,

r" increases continuously if the force 1s maintained constant.
& Ag a second approximation in the evaluation of the

. effect of the plate's inertia, the region of impact is

o asaumed to be 8o supported as to give the velocity of the

E plate and the bending moments computed in the first ap-

o proximation. The deformaticn is then assumed to be in the
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nature of a static penetration under adlabatic conditions
of plastic flow. The 1inertial resistance of the plate
material assoclated with this plastic deformation may
thereby be computed from the solution of the problem of a
projectile being pushed slowly through a plate. At high
veloclitlies 1t 1s found that this inertial resistance has a
high peax at the instant of impact, the pcak being higner
the blunter the projectile., This high initial inertial re-
slistance may give rise to shatter of projectiles striking
homogeneous armor. Tnls peak may be smoothed out, and
the tendency to shatter thercby lessened, by an A,P. cap.
When the impact of the projlectile is too abrupt,
which may arise eilther thnrough & very high striking ve-
locity or thnrough & blunt ogive, the above approximation
methods are no longer valid. In such cases the wave
propagation of stressc nmust be considered, Examples are
given ol the effect of such waves both in the plate and
in the projectile., In the plate they may give rise to
spalls being thrown off tie back of the plate. In the case
of tne projectiles these woaves may result in the detach-

rernt of tne front of the oglve,

C. Zener
Senlor Physiclst

R. #s ZORNIG
Colonel, Ordnance Dcpt.,
Director of Laboratory
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INTRODUCTION L.

The foundations of the mechanics of armor pene- -

tration lie in the simultaneous solution of the equations )
of motion of the projectile material and of the plate

material, The response of an A.P. projectile to a given

force may be calculated, to a good approximation, by &

Y W ST P T W |

consldering the projectile as an elastic body. This =

assumption allcws the calculstion of the general features

OO R |

of the stress inside a projectile during 1mpact,l and
from this knowledge a rational system for projectlle

S PO 7Y

design is being formulated whieh reduces to a minimum the
likelihood of projectile deformation or fracture during ) 1

penetration.2 In thie arpproximation the projectile is

regarded essentlally as a rigid body, and therefore 1ts

v

(4 equations of motion are readlly solubie. OCn the other

- -

L hand, the equations of motion of the plate, which neces~
3 sarily undergoes plastic deformation, are s¢ complex
E‘ that exact solutions are not to be expected. Neverthe- ) ;
less 1t 18 bellieved that & better understanding of the be-
havior of the plate may be obtained by -2inding, through

1. C. Zener and R. E, Peterson: '"Principles of Projectile
Design for Penetration, First Partial Report", Report
Number WAL 762/231,
2. Series of reports on YPrinciples of Projectile Design
e for Penetration',
C. Zener and J, Sullivan, Second Partial Report, Report
Number WAL 762/231-2.
D, Van Winkle, Third Partial Report
WAL 762/231e3,
D. Van Winkle, Fourth Partial Report, Report Number

s WAL 762/231-4, !

Cad Lamn oin }
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Report Number
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Judlclous assumptions, approximate solutions to the
fundamental equations rather than by guessing at the
plate's behavior based solely upon observations of the
plate after penetration has occurred. It ls the purpose
of the present report to furnish & guide in the making
of such approximations.

The problem of the reaction of the plate to the pro=-
Jectile would be greatly simplified 1f attention could be
concentrated upon the plate material in the lmmediate vi-
cinity of the projectile. This simplification 1s ac=-
complisied by first solving the equations of motion of the
plate material outside the immedlate vicinity of the proe
Jectile, l.e.,, outside the region where the material
undergoes plastic deformation, and then replacing this
material by an equivalent support.

If the velocity of the projectile 1s not too great,
the equations of motion of the plate material surrounding
the projectile may be simplified by neglecting the
inertial terms, i.e., the acceleration of the plate ma-
terlal. The problem of plate response then reduces to the
comparatively simple problem of static penetration under
known conditions of support, the deformation being re-
garded as occurring adiabatically (no heat flow). These
inertial terms in the equations of motion are unfortu-
nately often not negligible undoer the conditions likely

to be encountercd in combat, The effect of these inertial

.
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terms 1s to increase the force with which the plate Pug
reacts upon the projectile at the first instant of impact, .
and 1t 1s this increase in force which is the cause for B
projectile shatter.l When these inertial terms are not o’ 7
negligible, it 1s possible, at not too high velocities, <.€
to estimate their effects by a simplification which
regards the type of motion of the plate material as
independent of the incident velocity. In this case the
problem of the plate's response agaln reduces to the

problem of solving the equations for the plate material

.
el PE—te=t e IO

under essentlally static conditions, and finally using

the solutions =0 obtained to compute the effects of the

wr

material's inertia. Under more severe conditions the 1

inertial terms have an appreciable effect upon the type if*

of deformation, 1i.c., the actual propagatlion of stress
must be considered. An attempt is made to describe the o
reaction of the plate in such extreme cases, and typi- .

cal conscquences of stress waves are clited. T

RESULTS AND DISCUSSION 1
GROSS BEHAVIOR OF PLATE

(1]

T T -
a i
-
i

Armor with no incrtia would behave in a radically b

iz |

L]
b Slisedh, A’

different manner than does actual armor. No type of pro-
Jectile could penetrate, or even scratch, a frecly sus-

(] pended armor plate with no inertia. Such a plate would

"

acquirc the veloclity of the projJectile at tnc first k

A 1. C. Zener: "Hecharlsm of Armor Penetration, Third ) 1
Partial Report", Report Number WAL 71C/492-1. :
~7- ]




instant of contact, not allowing 1t to exert any force f

e,
PP
PP AN -

whatsoever. Armor plate without inertia 1if rigigly
supported at its boundaries would respond to & prolectile
impact in precisely the same manner as if a force were
slowly applied., Such a plate would suffer extensive
bending. The inertia of actual armor plates, that is, 3
thelr resistance to acceleration, acts to & first approxi-
mation as a support during prolectile impact. ;Eﬁ
The concept of plate support is not, however, without
ambiguity. Reference to Figure 1 shows that the effect _
of a support depends not only upon its rigidity but also
upon the "tolerance" of the support and the projJectile. (
Thus in a die with a small tolerance, a plate which is i
being punched suffers o nearly purc simple shear type of .

deformation. On the other hand, when the clearance i3

sufficiently large, the initial deformation of the plate

is nearly of the pure bending type. It is not clear,

without analysis, whether the support offered by the plate

inertia is of the close tolerance or of the large toler- i
ance type, in other words, whether the plate's response

tc a projectile inmpact is governed by shearing stresses

PP U

T. or by bending moments. Such questions are answered by . j
the analysis in the following sections. E

i In the study cf the groes behavior of & plate sub- i

Ff Jected to proJjectile impact, the btoundary effects at the '

: edges of the plate introduce only complicating irrele-

f. vencies. These irrelevancles may bc avcided by assuming




the duration of the impact to be so short that thc pro-
Jectile 1s no longer in contact with the plate when the
elastic waves reach its boundary, or, what amounts to ik
the same thing, by assuming the plate to cxtend laterally 9
to infinity. In the following discussion, thls second

concept will be adopted.

A. Velocity of Region of Impact. -]

The elastic response of a laterally infinite plate ‘;

'eg to a concentrated normal force has already been examined

g in some detail.® It was found that when such a force is fJ

I i
! applied, thc plate is displaced normally at the point of R
i 1
° application of the force with a veloclity which is pro- -]
} 4
i portional to thec force., Thus

i Velocity = a x force (1) 'ﬁ
’ The proportionality constant a 15 given by f;

e 1/2 :
o) a= {}.ﬁé.l"_"el} ko e . (2)

Here /ois the density, o Poisgson's ratio, E Young's Modu-

W,

lus, and e thc plate thickness.

L @ The previous analysis is generalized in Appendix A

2 b

’
a_g

to the case where the forece is distributed over the face

rather than concentrated at one point. Upon taking a

ekt

I, C. Zcner: '"The Intrinsic Inclasticity of Large Plates"
Physical Review, 59, 669 (1941).
[ D
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Pressure = (ﬂse)-l og-r2/82 f(t), (3)

Gaussian distribution, that is '1
&

1t 18 found that the plate displacement at the center of 7
L

she distribution is related to the total force f by
t
displacement(t) = a J G(t=t?) £(t') at' . (4) )
-
The function G 1s unity except for values of its argument

comparable to, or less than, the time required for an

Al ab g ot gt

elastic stress wave tc traverse the dlstance g, the distri-

bution modulue. Its precise form is given by

G(t) = 1 w % - tan~l p/t (5) b
where

p= [3afee?)E] /2 (2f2e) . ()

In the speoclal case of projectile impact, where the distrie
bution modulus s 1s comparable to the projectile caliber,

which in turn 1s comparable to the plate thickness, negliw

gible error is introduced by taking the function G in
Equation (4) as unity. In this case Equation (&) is
equivalent to the simple equation (1).

2 In all but very exceptional cases, the velocity of
L the plate is only a small percentage of the incident

i velocity of the projectile. As an example, suppose a proe-

o

jectile strikes a matching plate (e/d = 1) at a velocity

V of 2,000 f/s. The pressure exerted by the projectile

v T Y
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will be about /ove. Taking this pressure to act over
an area equal to the cross section of the projectile,
one finds that the plate velocity is at most only 3%
of the incident projectile velocity. b

Y

B. Bending Moment in Region of Impact.
A corollary of Equation (1) states that when the - ]

force is removed, the displacement at the original center !
of force distribution remalns constant. The motion of n';
the plate after the force is removed is depicted sche- ;'

matically in Figure 2,

it Al

From this figure it is evident that although the )
velocity 1s zero at the original center of force distri- 3 i
butlon, the curvature, and hence the tensile stress at 4
the back of the plate, approaches zero only asymptotically

after the removal of the force. This asymptotic behavior

suggests the followilng approach to the computation of the
bending moment, and hence of the tenslle stresses, on the
back surface of the plate. Let the force f(t) be distri-
buted over the face of the plate as indicated in

Equation (3). If this force were nonevanishing only in

the time interval At' ag t!', then the tenslle stress

r T(t) at any point on the back of the plate would be

proportional to f(t') and to At',
r T(t) ~ £(t') At
The constant of proporticnality can be a function only

=il




of the time interval tet', thus * .
T(t) = glt=t?) £(t}) &t
If now no restrictions are put upon £ for times prior !ﬁ’
oS
to t, the linearity of the elasticity equatione insures
that the contributions to T(t) of £(t') during all 2
®
previous time elements At' will be additive. Therefore K
t 2
Mt) = S gltet') f(t') at' . (7) o
- 90 ’—-"
°

The quantity g(te=t?!) may be called the influence
function. 1Its precise form will depend upon the precise

manner in which the force is distributed over the face

V.'

of the plate. It 1s evaluatedi in Appendix A for the
partlicular case of a Gaussian distribution, that is, for

a symmetrical distribution of the type giver. by Equation

‘P : .
. P

(3)e In the Appendix it is shown that the tensile stress
on the back surface symmetrically behind the force 1is
given by Equation (7) with the following influence function:

g(r) = (3/tm) (1 + 0) o2 (?%q?) ) (8)

where e is the plate thickness, and where

AT " TR

a= G2 (20 [ao)pe] L )

Tho quantity q 1s effectively the timo required for an

! elastic wave to travsl the distance s</e.

As an example of the above analysis, suppose a forco

Y -12- ’




with the Gaussian distribution of Equation (3) 1s suddenly
applied at t = o, and maintained at the constant value f. _
Then the integration of Equation (7) leads to g

T(t) = (£/2me?) * 1n(1 + t2/q°) , (10) |
in which equation ¢ has been replaced by 1/3. A plot of .
T(t) vs. t 15 given in Figure 3. When t is large compared {;
wlith q, this equation reduces to f

T(t) = (£/me2) * 1n(t/q), tHa . (11) J |

The inerease of the tensile stress T with time, as

given by Equation (10) or (11), is the basis for the type >
of projectile used in shock testing plates. In these B
tests 1t is desired to subjesct the back of the plate to ’5
tenslle stresses sufficiently large to cause plastic de=- b‘
formation in tension at the back of the plate, at the '
same time keeping the shearing stresscs sufficiently low .
to prevent a punching from being pushed out. The ap- »
propriate stress pattern is obtained by the use of a soft
projectile which mushrooms upon the plate, thersby pro-
longing the timc of impect.

i II DETAILED BEHAVIOR OF PLATE.

i In the first part of this report a study was made
of the response of the plate as a whole to an applied K
force, The information so obtained will now be used ta

; simplify the study of the behavior of the plate material

E..' -13-




immediately surrounding a projectile. This simpli-
fication is accomplished by replacing the plate material
outside of a certain cylindrical surface by a rigld
support, as indicated in Figure 4, with a diameter greater
than, but comparable to, the caliber of the projectile.
The boundary conditions at the support are so chosen

that the support, and hence the inclosed plate, move
normally with the velocity, given by Equation (1), with
which tae plate actually moves at the center of the
region of lmpact, and so that the moment with which the
support acts on the inclosed plate 1s equal to the

moment, whose tensile stresses are given by Equation (i),
of the actual plate at the center of the reglon of

1mpa.ct °

A, Low Veloclity Case of Quasi=Static Motion.

When the above mentioned concept of plate support
is adopted, the manrer in which the plate material 1s
deformed at any instant may be regarded as independent
of the velocity, provided the velocity is not too high,
and dependent only upon the position and direction of
notion of the projectile. Thus an increase of vaeloclty
by a given factor would increase the ratc of strain in
every element of the plate by the same factor, This
invariancy of type of dcformation with projecctile ve=-
locity does not neccessitate an invariancy of streo:as

distrivution with velocity. 1In fact, duc to the lnertia

“1ll-
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of the plate material, the stress pattern gradually
changes with projectile velocity. The stress pattern may
be regarded as that arising from the forces due to the
projectile, the support, and a certain distribution of
body forces. The body force acting upon each element of
volume 1s considered to be thec mass of the element, multi-
plied by the negative of its acceleration.

The effect of the inertia of the plate material in-
side the assumed support upon the force with which the
plate reacts on the projectile may be readily computed
without explicitly computing its effect on the stress
pattern throughout the plate. It i1s only necessary to
compute the total kinetic energy of the plate, K.E.,, as a
function of the velocity and position of the projectile.
The partial derivative of this kinetic energy with respect
to a spatial coordinate of the projectile gives the
component of force acting along the ncgative axis of this
coordinate.

The above mentioned method of computing the effect of
the plate material's lnertia upon the force with which it
rcseists penetration may be most simply illustrated by the
casc of normal incidence. In this case the force 1is

normal to the plate, and 1is directed along the axis of the

projectile. Let s be the distance which the projectile
has penetrated into the plates. Then that portion of the

plate's resistance which is duc to its inertia is given

-15-
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by the following equation:
Inertial force = g% (K.E.) . (12)

Special significance is to be attached to the notation
of the partial derivative. The kinetic energy is a
function not only of the positional variable s, but also :
of the velocity V. In the differentiation of Equation W
(12), cognizance 1s not to be taken of the fact that V %}
varies with s, but V 1s to be held constant, The kinetio =
energy will be proportional to /OVE, where’/?is the
density of the plate material, Thus

l-v

K.E, = A(s)/oV2 : (13)

The constant of proportionality A has the dimension of
volume.,

The plate's kinetic energy, and thc inertial force
assoclated therewith, are plotted schematically in
Figure 5 for projJectiles with two types of oglves. For

| el 4

. all types of ogives the inertial force has one common
? characterlstlc, the area beneath the incrtial force vs.

L‘ penetration distance is identically zero. Thus this force ?
E' opposes the projectile as it enters the plate, but alds E
S" the projectile as it leaves. The kinetic energy function

;. changes in 2 characteristic manner as the ogive ¢f the ‘
[ projectile is made blunter; the maximum value 1s raised, *
g and the inltial rise 1s steeper. These changes in the

|
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kinetic energy function are reflected in the inertial

force function by a sharp rise in the initial part.

A rm e o e
[0 .

The initial high inertial force may, when added to
the force arising from the resistance of the plate's
material to plastic deformation, be so high as to give
rise to projectile shatter. In attack against homo- -
geneous armor, it is the function of A.P, caps to lower
the initlal inertial pressure. This lowering 1s effected
by a smoothing of the initial rise in kinetlic energy, &as
illustrated in Figure 6, which smoothing results from the
effective lengthening of the time required for the ogive

to dig completely into the plate. In contradiction to

Y 3

the above interpretation of the action of A.,P, caps, it
is commonly stated that the function of an A,P. cap is

to lend lateral support to the projectile. In order to

demonstrate the correctness of the first point of view,
namely the smoothing out of the initial inertial force,
projectiles were made whose ogiuves were flattened cones,
The shatter characteristics of these projectiles were
examined for the two cases of bare ogives and of oglves
protected by caps on the flat faces. (The caps were .
disks of copper 1/32" thick). A compezrison of their be-
i havior is presented in Figure 7. Since the A.P. caps on
these projectiles did smooth out the initial inertial
force, while they could not provide lateral support, it

is apparent that, at least in these cases, the action of

. o S . o "
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A,P, caps 1s related to the 1initial inertial force.

P ONPED S SN

In the case of oblique impact the inertial force of
the plate reacting upon the projectile 18 no longer
directed along the projectile's axis. Any component of

thls force may be computed by an equation analogous to

PR f
LI . S B
P X S . o
L‘..A-—&.A.—A.A.‘A [ S R )

Equation 12, Thus suppose one wishes to know the component s
of the inertial force normal to the surface of the plate.

Letting x denote the position of the center of gravity of

the projectile from the plate, one then has

(Inertial force) = 2 (K.E.)
normal component ox

The interpretation of the differentiation 1in this equation 1

.- ey

is given in Figure 8. Thus consider & fictitious pro-
Jectile which has the same orlentation and the same ve-

L‘ locity as the actual projectile, but which is displaced

with respect to the plate by the distance Ax. Let &K,E.
be the increase of the kinetic energy of the plate in

o the case of the filctitious projectile over that caused by
E the actual projectile. Then dK.E./ax denotes the 1limit 3

of the ratio AK.E./Ox as Ox approaches zero.

- B. High Velocity Case of Stress Waves. '
In the previous section 1t was assumed that the strain ]
distribution in the plate material immediately surrounding A

° )

a penctrating projJectile wos independent of the projectile's =

velocity. This assumpticn enabled us, at least in princi-

PRPLPRIPRr |

ple, to compute the changes in stress distribution arising

E "'18- . ]
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from the inertia of the plate material. When this change
in stress distribution becomes so great that the elastic
strain associated therewith makes an appreciable change
in the deformation, the original simplifying assumption
of quasi-static deformation is no longer valid. An
accurate description of the plate's behavior can then be
obtained only by an analysis of the fundamental equations
of motion of the plate material.
Some very important qualitative conclusions may be
drawn merely from a consideration of the general nature
of the solutions to the fundamental equatione of motion
of the plate material. The following properties of these
solutions are of particuler importance to the present dis-
cussion,
l. Stress and deformation are propagated with a finite
velocity.
2. When a strcss wave rcaches a free surface, a
stress wave of opposite sign is reflected (e.g.,
a compressive wave is reflected as a tensile wave).
The first property makes it possible for an impulsive
compressive wave to exist in the plate. Thus suppose that,
due to the plate material's inertia, the projectile exerts
a very large force upon the plate for a very short interval
of time At. The product of At and of the velocity of stress
propagation, ¢, glves the length, &x, cf the compressive
stress impulse,
OLx = ¢ OF .
-19-
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If the time interval At is so short that Ax is less than
the plate thickness, the proj)ectile sets up an impulsive
compressive wave running across the plate. The time
interval At is shorter the higher the striking velocity
and the blunter the ogilve.

The second property is responsible for the trans-
formation of a compressive impulsive wave travelling o
towards the back of the plate into a tensile impulsive wave
travelling from the back to the face of the plate. If the
fracture stress of the plate is sufficiently low across a
plane parallel to the plate, this tensile wave will result
in the throwing off of a lamination. Examples are shown
in Figure 9. In this figure is shown the change in the
type of plate fallure as the veloclity of the projectile
was raised. The oglve of the projectile was sufficlently
blunt so that, at thec lower velocities, a punching was
found. At higher velocities, a distinct circular lamis

nation was thrown off the back of the plate. Sy

.

The force with wnich the projectile acts upon the

plate is exactly equal to the force with which the plate

Tp————

acts upon the projectile. It is therefore to be expected L.

that an inmpulsive compressional wave will run down the

.

projectile in an opposite direction to that of the com-
pressional wave in the plate. This compressional wave is T
reflected at the base of the projectile as a tensile wave.

As this tensile wave travels back into the ogive, the r

¢ ~20- o
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intensity of the stress increases as the area of the wave

front decreeses, If the intensity of the tensile stress
reaches the fracture stress of the projectile material,
fracture will result. An example of such a fracture is
shown as Figure 10,

The assumptions of quasi-static deformation break down
completely when the projectile presents a flat or curved
surface to the plate. In such cases the assumption of
quasi-static deformation would imply that the plate material
acquired a finite kinetic energy in an 1nf1n£tesimal
interval of iimc at the moment of impact. In order to
estimate the magnitude of the pressure which actually ex-
1sts between the projectile and the plate in such cases,

a detalled analysis is necessary. The results of such &an
analysis are discussed below.

Just after the projectile has made contact with the
plate, the plate material immediately in front of the area
of contact moves normally to the plate, lateral motion
being prevented by the inertia of the plate material. At
the first instant of contact one 1s therefore Justified
in treating the impact as a one dimensional problem. It
may readlily be seen thet for this case thc pressure is
given by the product (density of material) x (velocity of
stress propagation) x (velocity of interface of projectile
and plate). The velocity of a wave in which transverse

motlion 1s prevented, and in which the resistance to shear
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deformation may be neglected, 1is (Kéﬁ)l/g, where XK 1is

the bulk modulus. This veloclity will be denoted by c.

This veloclity 1s very nearly equal to the veloclity of
propagation of an elastic wave along a bar, namely

16,000 £/s. The initial velocity of the interface of the
projectile and plate nuet be taken as one half of the
projectile's velocity V, since at the first instant of
contact a wave of equal magnitude but of opposite direction

1s set up in the projectile. Thus
initial inertial pressure = (1/23 pcv . (1)

This pressure is plotted in Figure 11l.

If the wave motion remained strictly one dimensional,
the pressure would remain constant at the value glven by
Equation (14) until the return of a wave reflected from
a boundary. Actually, the spreading of the wave into
tne transverse directions results in a rapid decrease 1in
the pressure, This difference in the behavior of one and
of three dimensional waves is discussed analytically in
Appendix B, It is there found that in the three dimensional
case the initilal inertial pressure decreases exponentially

from its peak value. Thus,

t/ T

initial inertial pressure = 1/2 pcV e %

The time constant 4 is approximately equal to the ratio of
the diameter of the contact region to the veloclity with

which the stress wave ls propagated.
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APPENDIX A

In this appendix the theory is developed for the
influence functions, G of Equation (4) and g of Equation
(7), which relete the displacement of the plate, and
the maximum tensile stress on the back surface, re-
spectively, of a laterally infinite plate to the force
acting upon the face. An explicit expression 1s obtalned
for the particular case of a Gausslan distribution, as
defined by Equation (3).

The analysis will follow closely that given by the
authorl for the relation between a concentrated force
acting upon a laterally infinite plate and the veloclty
produced thereby. In this analysis we start from the
usual approximate theory of thin plates.2 In this theory
it 1is assumed that the radius of curvature of the plate
is everywhere large compared with the plate thickness,
and that the angle between the plate and the original
plane is everywhere small. Upon taking the x,y plane to
be parallel to the original plane of the plate, one has
the following approximate equation for the transverse dis-

placement U(x,y,t) ¢f the plate:

(D\-} + moe/ote) U=12 . (ael)
1. C. Zener: “T;é‘fﬁtrinsic Inelasticity of Large Plates”,
Physical Review 669 (1941)
2. A. EI H.

Love: Iathematical Theor of Elasticity",
(Cambridge, 1927) Fourth Edition, p. 437(.
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In this equation, m is the mass of & unlt area of plate, e

and Z(x,y,t) 1s the surface density of the normal force.

The rigidity modulus D is defined by
D = (1/12) e E', E' = E/(1~-0°) ,

where e is the plate thickness, E i1s Young's Modulus and
o 1s Polsson's ratic., The operator AV 1s defined by the

following equation:
vz = 2/‘ax2 + Befaye A )

In Equation (a~1), 2(x,y,t) 1s to be regarded as a

known function, U(x,y,t) as an unknown function. The

LIS

formal solution for U will be obtained in terms of the

eigenfunctions of the auxiliary equation:

[(D/m)1/2 v+ W] Ulx,y) = 0, (a=2)

and of the boundary conditions at the edge of the plate,

_ The eigenvalues and normalized eigenfunctions of these

'

I equations will be‘hoted by W, and U,, respectively, where

the suffix n refers to an ensemble of two characteristic

T numbers. The formal solution will therefore be written as o
: U(x,y,t) = Z, Cn(t) U (x,y) (a=3)

&

o The general coefficient C, in the above summation

will be obtained by substituting this equation for U into

g Equation (a~1), multiplying by Up, and integrating over

-24-
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the entire surface of the plate. Upon using the ortho-

gonality property of the elgenfunctions one obtalns

(2/dt2 + W2) Ch(t) = w1 z,(¢) , (a=4)

where

2,(¢) =/ U, 2z(x,y,t) dA, (a~5)

dA denoting an element of area of the plate.

Corresponding to the condition that the displacement
U, as well as the time derivative of the displacement will
be taken to be everywhere zero at t = O, that solution of

Equation (a=4#) will be obtained which satisfies the con-
ditions

C=0
} at t = 0 (a~6)
ac/dt = 0

That solution of Equation (a-4k) which satisfies the boundary
condition (a=6) is

1 It
C, = (m W) ! o/ Z,(t') sinW (t=t') at' . (a-7)

The displacement U is now obtained by substituting Cn frcm
Equation (a-7) into Equation (a-3). The result is

Ulx,y,t) = Z(n W)"L U (x,y)-

t
I Zp(t') sinW (t-t') dt! (a~8)
e}

In computing the streses o the back surface of the

plate, we need the quantity VEU. Operating on both sides

-25-
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of Equation (a=8) with ©°, and using Equation (a-2),

we obtaln )

2 -1/2 g [ ‘ %?

¢ U = =(mD) Zn Un(x,y) -/ Z,(t') sinWy(t=-t') at* , .

° (a~8')

Before proceeding further with either Equation (a=8)

or Equation (a=8'), 1t is necesaary to define the shape o
of the plate and to specify the boundary conditions to
which the plate is sublected. The plate will be taken

as a square lying in the region 2o

0¢( x (L
OC¢y (L.

The boundary conditions will be so chosen tvhet the plate
1s free to pivot along its edges. The normalized eigen-

functions of the differential equation (a-2) are then
U(J x) = (2/L) sin(nix/L) sin(mky/L) , 3,k =1,2,°° P
’

The corresponding eigenwert is

g
o .

Wik = (/w2 (L) (12 + K2) (am9)

P The surface density of force Z(x,y,t) will be taken £
r as given by » of Equation (3), with the center of the :
i distribution at the center of the plate, il.e., at
;. x = L/2, y = Lf2. At the center, U(y,x) is different from
: zero only when both J and k are odd. When J and k are
% both odd one obtains, using Equations (a-5) and (a~9),

. -
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that at center of plate

Ug) 2y = 8172 £ exp{ -(n/D)2/2 (a2/1) W(J".k)k
(a=10)
This equation for Uy Zn is now substituted into
Equations (a=-8) and (a-8'), and the summation I, performed
over all characteristic numbers jJ,k. The number of en-
sembles (J,k) for which both J and k are even, and for

which W ) lies in the range dW at W, may be seen from

(3,k
Equation (a-2) to be given by

[L2 (m/D)1/2/16n] aw .

and therefore the summation En--- may be replaced by an

integral as follows

Tpeee = [}2 (m/D)1/2/16ﬂ ] ;ndw coe (a=11)
) .

Upon applying Equations (a=10) and (a=-11) to Equation
(a~8), one obtains Equations (4)-(6) of the text. In
the integration with respect to t', one makes use of the
formula
co
/ e 3% x~1 ginx dx = n/2 - tan~l a ,
o
which may bec obtained by integration of the following
standard integratlion formula with respect to b over the
range a8 to og:
I =
J e % ginx dx = 1/(b= + 1) .
o

Applying Equations (a-10) and (a=11) to Equation

-27-
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(a-8'), one obtains at the center of plate
t
% = =D)L S r(e) ¢ (eett) + [ (6-01)2

o
+ qé] - tL ,
where

a= (o/)t/2 m

Upon utilizing the definitions of m and of D, this
equation for q ip seen to be equivalent to Equation (9).
It remgins to pass from 72U to the stresses in the
back of the plata. If M, and M, refer to the bending
moments, per unlt length, along two orthogonal directions,

then1

M+ My = -D(1 + o) g ,

where o 18 Poisson's ratio. In the center of the pressure

distribution Ml and M, are equal. Denoting thelr value
by M, we therefore abtain

t
M= (1 + o) (sn)"1 S t(t') (t=-t') [(t—-t')2
(o]
+ q2] =1 a¢r ., (a~-11)

In the elastic range the moment M and the tensile stress

T at the surface are related by

M= (e2/6) T . (a=12)

I.” R. V. Southwell: Theory of Elasticity (Oxford, 19%1),
p. 230.
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Upon substitution of Equation (a»12) into Equation (a=-11),
one obtains Equation (7) with the influence function g
given by Equation (8).
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APPENDIX B

In this appendlx an analysis will be glven of the
difference 1n pressures necessary suddenly to start a
boundary moving at a constant velocity 1n the one
dimensional case and in the three dimensional case.

In both cases the medium will be regarded as pos-
sessing no resistance to shear deformation, i.e., the
medium will be considered as a perfect fluid. The bulk
modulus of this fluid will be denoted by K. In the one
dimensional case lateral expansion will be prevented by
lateral constraints,

The equations of motion and the continuity equations
have the following solutions,

1. One dimensional case.

The velecity V and pressure P are given in terms of

a velocity potential & through the equations

V== 00/ox, (b=1)

o
]

x/%/bt a (b=2)

The velocity potentlal depends upon x and t as follows,

® = f(x-ct) (b=3)

where f 18 an arbitrary function of 1ts argument, and

®

! where 02 = K//O. Substitution of Equation (b=3) into
Equations (b-1) and (b~2) gives

| P = pcV (b=lt)

®
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This equation is of general validity, independent of
the variatiPn of V with time,

2. Three dimensional case.

In this case the medium is assumed to extend to
infinity in every direction, and to contain a spherical
cavity. The walls of this cavity are further assumed to
suddenly start to move radially outwarde with a constant
velocity. The pressure on the walls will be computed as
a function of time,

The veloclty and pressure are given by equations

analogous to Equations (b=1) and (b=2), namely1
V== 33f3r (b=5)
P=KPD3ot . (b~6)

The velocity potential 1s given by
d = f(r-ct) . (b,7)
r
where, as before, f 1s an arbitrary function of 1its
argument,
Substitution of Equation (b=-7) into Equation (b~5)
leads to

Of/or =r~1 £ = -r V.

Since the argument of f 1s r-ct, the above may be re-

written as

of/ot + (e/r)f =cr V .

1. H. Lamb, Hydrodynamics (Cambridge Press, 1932), Sixth
edition, p. 9.
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We now suppose that V 1s some known function of t at

‘r = a, Then at this value of r,
D/t + (c/a)f = ca V, . 4

We shall seek the solution of this equation which
vanishes at some definite time, say at t = o . This 2
solution 1s
5 ~(c/a)t
f=éva(l"e ),r=&.
Substitution of this equation back into Equation (b~7) . !:
and then into Equation (b=6), leads to
-(c/a)t .
p=/bcvae , r=a, (b~8) E
Upon comparing Equations (b=4) and (b=-8), we see

that the pressure starts off with the same values when

the boundaries begin to move. While the pressure remains
constant in the one dimensional case, 1t decreases

exponentially in the three dimensional case.

cLTWPL T, .
g o.qg a
[N

It may be noted that Equation (b-8) 1s strictly the
solution to the case where the veloclty remains constant

at r = a, rather than at the moving boundary. Thls

difference in problems introduces no essential change in
I the solution.
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FIGURE 6

ILLUSTRATION OF HOW AN A.P CAP REDUCES
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FIGURE 8

ILLUSTRATION OF METHOD OF COMPUTING THE

NORMAL COMPONENT OF INERTIAL FORCE
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FIGURE 9

ILLUSTRATION OF EFFECT OF REFLECTION
OF COMPRESSIVE WAVE AT BACK OF PLATE

o ﬂ@

V= 1288 V= 1620

PURE SHEAR PUNCH BACK SPALL

(PLATE:— .30" THICK, 321 BHN;
PROJECTILE: — 62 ROGKWELL “C", NORMAL INCIDENCE),
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FIGURE 10

ILLUSTRATION OF EFFECT OF REFLECTION
OF COMPRESSIVE WAVE AT BACK OF PROJECTILE

(PLATE THICKNESS = 2"; PROJECTILE 37MM BODY
WITH POINT ON OGIVE BLUNTED; v= 2350 f/s).
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FIGURE |l

" INITIAL INERTIAL PRESSURE IN CASE PROJECTILE
PRESENTS A TANGENT [SURFACE TO PLATE AT IMPACT
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